
www.manaraa.com

REVERSE BIFURCATIONS IN SOFTWARE DEVELOPMENT

P. Kokol1, E. Feuer2, M. Leni�1, V. Podgorelec1, A.I. Cardoso3, L. G. Crespo4

1 Laboratory for System Design
FERI, University of Maribor, Slovenia

kokol@uni-mb.si

2 SZT Tszaki, Budapest, Hungary

3 Mathematical Science Center
University of Madeira, Portugal

4 University of Lisbon, Portugal

Abstract: Computer software and the software development process belong to the class of complex systems. As
a consequence software development process can be analysed by tools, techniques and concepts used in the
chaos theory, especially logistic map. In the present paper we introduce an approach that enables assessment of
current state the software development process based on previous software revisions. That further enables us to
control the software development process in more efficient ways. For the analysis we used metrics that does not
depend on any specific programming language.

Keywords: bifurcations, alpha metrics, software development.

1. INTRODUCTON

Complex systems share certain features [1-5] like having a large number of elements, possessing high
dimensionality and representing an extended space of possibilities. Such systems are hierarchies consisting of
different levels each having its own principles, laws and potential structures shortly called emergent properties.
Computer programs, including popular information systems, usually consist of (or at least they should) number
of entities like subroutines, modules, packages, classes, functions, etc., on different hierarchical levels.
Concerning “ laws of software engineering” or the concepts of programming languages the emergent
characteristics of above entities must be very different from the emergent characteristics of the program as the
whole. Indeed, the claim that programming techniques as stepwise refinement, top-down design, bottom up
design or more modern object oriented programming are only meaningful if different hierarchical levels of a
program have distinguishable characteristics – clearly qualify computer programs as the class of complex
systems that should be developed using a “complex development process” [10].
Intrigued by above we were interested if same characteristics of chaotic behaviour can be really found in the
software development process. For that purpose we modelled it as an Reverse logistic iterative map which shows
strong chaotic behaviour and tested the model on some large software development projects.

2. LOGISTIC MAP AND THE SOFTWARE DEVELOPMENT PROCESS

A very popular and interesting concept is the Logistic map defined by the following function

)1(1 nnn XXX −=+
�

 (1)

Computer programs are normally developed and maintained by an iterative process – the computer programs
evolves trough different successive versions (Figure 1). In the beginning we have to thought about many ideas
representing different possible correct or incorrect solutions – creativity is large, entropy is large information
content is low. In the next phase some choices are made, and probably the correct and optimal solutions emerge

www.manaraa.com

– entropy and the number of ideas are reduced as the need for creativity, contrary the information content is
enlarged. In the last phase we are working with a single idea (probably a very complex one), creativity and
entropy reaches the minimum and information content the maximum (Single idea phase). Additionally, modern
software development methodologies advise to work on the small modules first and then slowly integrate
modules into larger units. Thereafter correlation between variables, concepts, ideas are on the short range in the
beginning and then extend toward longer ranges.

time / version

chaos bifurcations normal3.6 3.0

Ideas
formation

Convergence of
ideas

Implementation
of a single idea

amount
Information

content

Creativity /
Number of ideas /

Entropy

Fig. 1. The software development process and logistic map

Above phases can be matched with the three phases of the Logistic map graph: namely chaos, bifurcation and
normal phase (bifurcation’s represent the ideas, viewpoints, beliefs – simply ideas in the further text) but in the
reverse order – thereafter we called it the Reverse logistic model of software development. Since the phase of a
logistic map can be easily identified by the equation control parameter π, we can use the “ logistic map ↔
software development process match” to test the hypothesis that our model is correct, assuming that we can
measure the information content/entropy and correlation of each single program version. In the paper we use the
alpha metric presented in next chapter for this manner.

3. ALPHA METRICS AND THE LOGISTIC PARAMETER

Alpha metric [6-9] is based on the long-range correlation calculation. In this paper we used the so-called CHAR
method described by Kokol [8]. A character is taken to be the basic symbol of a computer program. Each
character is then transformed into a six bit long binary representation according to a fixed code table (i.e. we
have 64 different codes for the six bit representation – in our case we assigned 56 codes for the letters and the
remaining codes for special symbols like period, comma, mathematical operators, etc) are used. The obtained

www.manaraa.com

binary string is then transformed into a two-dimensional Brownian walk model (Brownian walk in the text which
follows) using each bit as a one move - the 0 as a step down and the 1 as a step up. With such approach the
program is transformed into signal and can be therefore analysed with tools and techniques used in the chaos
theory. Another aspect of the conversion is programming language independence; therefore same method can be
used on projects, which contain different programming language. It also enables to analyse specifications and
other documents concerning the project if they are available in digital character based form.
An important statistical quantity characterising any walk is the root of mean square fluctuation F about the
average of the displacement. In a two-dimensional Brownian walk model the F is defined as:

[] []20
2

0
2),(),()(llyllylF ∆−∆≡ (2)

where

)()(),(000 lyllylly −+≡∆

l is the distance between two points of the walk on the X axis
l0 is the initial position (beginning point) on the X axis where the calculation of F(l) for one pass starts
y is the position of the walk – the distance between the initial position and the current position on Y axis

and the bars indicate the average over all positions l0.

The F(l) can distinguish two possible types of behaviour:

• if the string sequence is uncorrelated (normal random walk) or there are local correlations extending up to a

characteristic range i.e Markov chains or symbolic sequences generated by regular grammars, then

F l l() .≈ 0 5

• if there is no characteristic length and the correlations are “ infinite” then the scaling property of F(l) is

described by a power law

F l l() .≈ ≠α αand .05

The power law is most easily recognised if we plot F(l) and l on a double logarithmic scale. If a power law
describes the scaling property then the resulting curve is linear and the slope of the curve represents α. In the
case that there are long range correlation in the program analysed, α should not be equal to 0.5.
The α metric measures the information content of the program. Large difference of α value form 0.5 means
more information content and less entropy and less creativity. As a consequence α values near 0.5 indicates
phases near the chaotic phase. To make these assumptions more visible, we normalised α using the following
equation:

5.02 −= �� nor (3)

In such manner the αnor values lies between 0 and 1, 0 indicating the maximal entropy. To be able to calculate
the phase using α values we should calculate π and thus rearrange the Logistic map into

)1(
1

nn

n

XX

X

−
= +�

 (4)

While the bifurcations in the Logistic map in our case represent the number of ideas and while the αnor is
inversely related to that number we have to calculate the normalised number of ideas with

www.manaraa.com

norI �−=1 (5)

3.1 αααα and development phases

When using presented approach we’ve noticed several distinguished states of projects. According to the trend of
α values we were able to identify 7 different behaviours shown in table 1.

αααα trend Logistic Map Phase/
Phase trend

Development process Phase/
Phase trend

Current Phase

Steady Normal Single idea Normal/
Single idea

Falling Toward chaos Toward idea formation If π less then 3 normal/
Single idea

Increasing Toward normal Toward single idea If π greater then 3.6 chaos/
idea formation

Oscillating Bifurcation or
Chaos

Idea convergence or
Chaos

If π greater then 3.6 chaos/Idea
formation

Table 1. Phases and states of software development

4. CASE STUDY

The theory presented in the previous sections has been tried out on real world projects consisting of many
modules and followed trough many versions. Some results of interesting modules are shown on figures 2 to 9.
Figures 2. trough 5. present the no - normalised alpha, size in lines of code an bytes and the π coefficient of the
logistic map for a more or less normal development of a module. The chaotic behaviour is shown in the
beginning (π is larger then 3) and goes trough to normal – we can conclude that the process has stabilised and
that only some minor maintenance operations are still performed. The project documentation confirmed our
conclusion.
Figures 6. trough 9. present the no - normalised alpha, size in lines of code an bytes and the π coefficient of the
logistic map for a chaotic development of a module. As we can see during the whole period some pieces of code
are added, deleted (Figures 7 and 8), information content (expressed by alpha) is also oscillating, and that chaotic
behaviour is expressed in PI that is above 3 almost all the time. We can conclude that the process has not been
stabilised yet and that the mayor development is still under the way. Going trough the project documentation
showed that actually two development teams have done development with wholly different ides competing for
resources and trying to prevail over the other party.

www.manaraa.com

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 10 20 30 40 50 60 70 80
Fig. 2. Alpha for a module expressing normal
behaviour

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80
Fig. 3. LOC for a module expressing normal behaviour

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50 60 70 80
Fig. 4. Size in bytes for a module expressing normal

behaviour

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 10 20 30 40 50 60 70 80
Fig. 5. π for a module expressing normal behaviour

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100 120 140 160 180 200
Fig. 6. Alpha for a module expressing chaothic

behaviour

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200
Fig. 7. LOC for a module expressing chaothic

behaviour

www.manaraa.com

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140 160 180 200
Fig. 8. Size in bytes for a module expressing chaotic

behaviour

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160 180 200
Fig. 9. ππππ for a module expressing chaotic behaviour

5. CONCLUSION

In the present paper we presented a hypothesis that the software development process can be modelled as a
reverse logistic map. We tested the hypothesis on more then 1000 modules of several large projects in several
different programming languages and shown that the great extent the hypothesis can be confirmed. Very
important feature of presented approach is its programming language independence.

6. REFERENCES

[1] Bar Yam, Y., "Dynamics of Complex Systems", Addison Wesley, 1997.

[2] Tucker, A.B. (ed.), "The Computer Science and Engineering Handbook", CRC Press, 1997.

[3] Kitchenham, B., "The certainty of uncertainty", Proceedings of FESMA (Eds: Combes H et al),
Technologish Institut, 1998, pp. 17-25.

[4] Morowitz, H., "The Emergence of Complexity", Complexity 1(1), 1995, pp. 4.

[5] Gell-Mann, M., "What is complexity", Complexity 1(1), 1995, pp. 16-19.

[6] Kokol, P., Kokol, T., "Linguistic laws and computer programs", Journal of the American Society for
Information Science, 47(10), 1996, pp. 781-785.

[7] Kokol, P., Podgorelec, V., Brest, J., "A wishful complexity metric", Proceedings of FESMA (Eds:
Combes H et al), Technologish Institut, 1998, pp. 235–246.

[8] Kokol, P., Brest, J., "Fractal structure of random programs", Sigplan Notices, June 1998, pp. 33-38.

[9] Kokol, P., Podgorelec, V., Zorman, M., Pighin, M., "Alpha - a generic software complexity metric",
Project control for software quality (Eds: Rob J. Kusters et al.), Maastricht : Shaker Publishing BV,
1999, pp 397-405.

[10] Cardoso, A.I., Crespo, G., "Is the software process a cahotic one ?", Working paper of Mathematical
Science Center, Madeira University, 1999.

